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a b s t r a c t 

In this paper, we investigate a principle way to learn a common feature space for data of different modal- 

ities ( e.g. image and text), so that the similarity between different modal items can be directly measured 

for benefiting cross-modal retrieval task. To effectively keep semantic/distribution consistent for common 

feature embeddings, we propose a new Adversarial Task-Specific Learning (ATSL) approach to learn dis- 

tinct embeddings for different retrieval tasks, i.e. images retrieve texts (I2T) or texts retrieve images (T2I). 

In particular, the proposed ATSL is with the following advantages: (a) semantic attributes are leveraged to 

encourage the learned common feature embeddings of couples to be semantic consistent; (b) adversarial 

learning is applied to relieve the inconsistent distribution of common feature embeddings for different 

modalities; (c) triplet optimization is employed to guarantee that similar items from different modalities 

are with smaller distances in the learned common space compared with the dissimilar ones; (d) task- 

specific learning produces better optimized common feature embeddings for different retrieval tasks. Our 

ATSL is embedded in a deep neural network, which can be learned in an end-to-end manner. We conduct 

extensive experiments on two popular benchmark datasets, e.g. Flickr30K and MS COCO. We achieve R@1 

accuracy of 57.1% and 38.4% for I2T and 56.5% and 38.6% T2I on MS COCO and Flickr30K respectively, 

which are the new state-of-the-arts. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The prevalence of social networking has significantly increased

the amount of data with various modalities, and images and texts

contribute the dominant forms of the data. Usually, the data with

different modalities are leveraged collectively to describe the same

object or event. For instance, an image generally carries similar

semantic information with texts. Consequently, the cross-model

retrieval task is imperative for mining the association between

different modalities. In this work, we focus mainly on tackling

the cross-model retrieval task. However, cross-modal data usually

spans different f eature spaces and has its own distribution charac-

teristics. Thus, measuring the semantic similarity between visual

data and text data has been widely considered as a great challenge

for cross-modal learning communities. 
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In the last few decades, numerous methods [1–6] have been

roposed for the cross-model retrieval. Most existing approaches

ry to learn an optimal embedding for each view or modality in

 common latent space, in which the distance between different

odal items with similar semantics could be minimized while that

ith dissimilar semantics could be maximized. In the common

pace, the items from different modalities have isomorphic rep-

esentations so that the similarity between them can be directly

omputed. We observe that most previous works have learned only

ne common space for addressing both images retrieve texts (I2T)

nd texts retrieve images (T2I) tasks. However, such a common

pace may not be optimal one for I2T or T2I, which has already

evealed by Wei et al. [7] . We consider the reason as the learned

ommon space is a compromised one by taking both two retrieval

onstraints into account. Although Wei et al. [7] have leveraged

wo independent common spaces for addressing different retrieval

asks, there are some obvious shortages: (1) it is heavily dependent

n high-level data categories when learning the common repre-

entations; (2) it only considers to correlate common embeddings

sing pair-wise inputs but ignores the dissimilar samples; (3) con-

istent distribution of the learned embedding features for both im-

ges and texts is not taken into account. 
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Fig. 1. The motivation of this work. We target to learn task-specific common spaces for different cross-modal retrieval tasks. Triangles and circles indicate embedding 

features for images and texts, respectively. The green and blue indicate the learned common spaces for I2T and T2I, respectively. 
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To address the raised issues, we propose a new Adversarial

ask-Specific Learning (ATSL) approach to learn distinct embed-

ings for different retrieval tasks. As shown in Fig. 1 , our target is

o learn two different common spaces for two retrieval tasks sim-

lar to [7] . The two colors ( green and blue ) indicate that the com-

on spaces are learned in different manners even the embedded

eature representations are with the same dimension. To overcome

he drawbacks raised by Wei et al. [7] , the following strategies

re adopted. First of all, we leverage mid-level attributes instead

f high-level categories to encourage semantic consistent of pair-

ise embedding. Since attributes can be easily obtained from tex-

ual data, our approach has a better generalization ability for both

upervised and unsupervised cases compared with the method us-

ng human annotations. Secondly, the popular triplet optimization

s embedded in our ATSL, so that the pair-wise items are usually

ith more similarity in terms of distance metrics compared with

he unrelated ones. Finally, to guarantee the distribution consistent,

e introduce an adversarial learning component to better narrow

he distribution differences of the learned embedding features of

mages and texts. Our ATSL is integrated into a unified deep-based

ramework, which can be effectively trained in an end-to-end man-

er. 

In summary, main contributions of the paper can be summa-

ized as follows: 

• We leverage the semantic attributes to encourage the learned

common feature embeddings of couples to be semantic consis-

tent. 

• We employ the triplet optimization to guarantee that similar

items from different modalities are with smaller distance in the

learned common space compared with the dissimilar ones. 

• The least squares generative adversarial networks are intro-

duced to learn common feature embeddings for different

modalities, in which the inconsistent distribution can be re-

lieved. 

• A task-specific learning manner is adopted to produce better

optimized common feature embeddings for different retrieval

tasks. 
• Extensive experiments on the two publicly available datasets

(MS COCO and Flicker 30K) significantly demonstrate that the

proposed method outperforms other state-of-the-art methods. 

. Related work 

.1. Cross-modal retrieval 

Inspired by CCA [8] , many interesting works [4,9–11] are

roposed to improve the performance for multi-modal retrieval.

pecifically, Yang et al. [12] propose cross-modal retrieval frame-

ork based on semi-supervised learning, which is applicable

o many applications including 3D pose/motion data retrieval,

mage retrieval and cross-modal retrieval. Moreover, Andrew et al.

ntroduce a deep CCA ( DCCA ) [13] to learn complex nonlinear

mbedding for two associated views. Gong et al. [14] first propose

o learn three-view embedding for capturing high-level semantic

nformation by supervised and unsupervised manner. Feng et al.

15] employ three kinds of correspondence autoencoders to learn

oth representation and correlation in a single model. Klein et al.

16] focus on encoding word2vec embedding by exploiting Lapla-

ian mixture model and hybrid Gaussian-Laplacian mixture model.

ang et al. [17] apply two fully connected layers to learning

ross-modal structure-preserving embeddings for text and image,

espectively. Eisenschtat and Wolf [18] propose a tied 2-way neu-

al network framework for image-sentence matching task. Wang

t al. [19] propose adversarial cross-modal retrieval method to

earn both discriminative and modality invariant representation

or image-sentence matching tasks. Wang et al. [20] propose em-

edding network and similarity network to learn common latent

mbedding space and predict a similarity score for cross-modal

etrieval tasks. Cao et al. [21] exploit multi-view nonparametric

iscriminant analysis for class-level cross-modal retrieval. Ren and

ua [22] learn to integrate local concepts with their geometry

tructures as the side information for image captioning task. Huang

nd Peng [5] transfer knowledge from a large labeled cross-modal

ataset to relatively small dataset by two-level transfer archi-

ecture and progressive transfer learning mechanism. Wu et al.

23] propose a novel two-stage approach to learn cross-modal
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a  
embeddings by mapping cross-modal data to low dimensional

subspace that preserve both semantic and feature information.

Huang et al. [24] enhance the image representation by learning

semantic attributes and incorporating them into a correct seman-

tic order for cross-modal retrieval task. Liu et al. [25] deal with

cross-modal hashing task by fully exploiting the complementary

information and semantic correlation, which is used to preserve

correlation between categories and heterogeneous instances. Gu

et al. [26] incorporate I2T and T2I generative models into the

deep conventional cross-modal feature embedding to improve

the performance of cross-modal retrieval. Yu et al. [27] propose

a regularized cross-modality ranking ( ReCMR ) method to tackle

cross-modal zero-shot learning task by taking both inter-modal se-

mantics and intra-modal into consideration. Cao et al. [28] propose

a novel multi-view modular discriminant analysis approach to gen-

eralize multi-view embedding method using the graph embedding

framework for class-level image-sentence matching. Zhang and

Lu [29] propose an image-text classification ( CMPC ) loss and

image-text matching loss ( CMPM ) to learn discriminative cross-

modal representation for image and sentence. Chowdhur et al.

[30] propose a two-stage approach for mining weakly-annotate

web images to learn a more robust visual-semantic embedding. Liu

et al. [31] propose to learn a modality-invariant text-image em-

bedding for image-text matching by involving adversarial learning.

2.2. Generative adversarial nets 

Goodfellow et al. [32] first propose a magical framework ( GAN )

for estimating generative models by an adversarial learning pro-

cess, in which they train two parts: a generator G that captures

the data distribution from the training dataset, and a discriminator

D that estimates the probability that a sample is from the real

training dataset rather than the generator Mirza and Osindero

[33] propose the conditional generative adversarial nets ( CGAN ),

which can be built by simply feeding the conditional variable

for both the discriminator and generator. Radford et al. [34]

introduce a stable framework for training deep generative ad-

versarial networks via CNN . Reed et al. [35] investigate GAN

formulation and a novel deep framework to deal with the text-

to-image synthesis task. Isola et al. [36] develop conditional

adversarial networks named pix2pix for image-to-image trans-

lation problems. Ledig et al. [37] present SRGAN , an adversarial

network ( GAN ) for photo-realistic single image super-resolution

( SR ). Mao et al. [38] propose the least squares generative adversar-

ial networks ( LSGANs ) that utilize the least squares loss function

when training the discriminator. Choi et al. [39] propose StarGAN ,

a scalable and novel approach that can perform cross-domain

image-to-image translations by exploiting only one model. Ar-

jovsky et al. [40] introduce an algorithm that deems WGAN , an

alternative to traditional GAN training. Zhang et al. [41] develop

the self-attention generative adversarial network ( SAGAN ) that

allows long-range and attention-driven dependency modeling for

image generation tasks. Gulrajani et al. [42] propose an alternative

approach to clip weights based on WGAN : penalizing the norm

of gradient of the critic with respect to its input. Brock et al.

[43] train BigGAN at the largest scale yet attempted, and analyse

of the training behavior of large scale GANs. 

2.3. Deep metric learning 

Metric learning learns a metric function from training data to

calculate the similarity or distance between samples, which is a

key component for cross-modal retrieval. Yi et al. [44] present a

deep metric learning method ( DML ) by making use of siamese con-

volutional neural network to learn a similarity metric from image
ixels. Hu et al. [45] propose a discriminative deep metric learn-

ng approach ( DDML ) for face verification task in the wild. Song

t al. [46] introduce a method by taking full use of the train-

ng mini-batch by lifting the vector of pairwise distances within

he mini-batch to the matrix of pairwise distances. What’s more,

u et al. [47] propose a deep metric learning ( DTML ) method for

omain-transfer visual recognition. Sohn [48] focus on a novel

etric learning objective named multi-class N-pair loss . Liong et al.

49] propose a new deep coupled metric learning ( DCML ) approach

or image-text matching, which focus on matching samples cap-

ured from two different modalities. Chen et al. [50] consider video

bject segmentation problem as a pixel-wise search in an embed-

ing subspace via the modified triplet loss function. Duan et al.

51] propose a deep adversarial metric learning ( DAML ) architec-

ure to generate synthetic hard negatives based on the observed

egative samples, which can be widely applied to existing super-

ised deep metric learning approach. Qian et al. [52] adopt the

argin preserving metric learning framework ( MaPML ) to learn

oth similarity metric and latent samples. Iscen et al. [53] present

 novel unsupervised framework for hard training example min-

ng on Manifolds. Zhao et al. [54] propose a hard triplet generation

ethod ( HTG ) via adversarial training for learning an optimal fea-

ure embedding for images. Xie et al. [55] attempt to address three

ssues of existing orthogonality-promoting DML approaches that in-

lude lacking theoretical analysis and computational inefficiency in

eneralization. 

. Adversarial task-specific learning 

In this section, we give an overview of the proposed adversarial

ask-specific learning approach, and each component in details will

e illustrated then. 

.1. Overview 

The goal of ATSL is to find a discriminative common space

here the distance of data from different modalities can be mea-

ured effectively. Concretely, we first extract their feature vectors

or the visual and text data, respectively. Then, features in hetero-

eneous space are simultaneously fed into the proposed network

o learn the optimal feature representations. The overview of the

roposed ATSL is illustrated in Fig. 2 , which consists of three novel

omponents, i.e. neighborhood-preserving image-text embedding,

odality-dependent attribute-preserving feature learning and ad-

ersarial cross-modal feature learning. Since the ATSL is based on

he generative adversarial networks, the training stage is divided

nto two parts (generator and discriminator), and the discriminator

s trained before the generator. During the process of training gen-

rator, we jointly minimize the embedding, adversarial and classi-

cation losses. Thus, the loss function for the discriminator can be

ormulated as: 

 D = L lsgan (D ) (1)

here L lsgan ( D ) is the least squares loss for the discriminator. 

For the generator, the loss can be defined as: 

 G = L emd + λ · L at t r + μ · L lsgan (G ) (2)

here L emd and L attr are the loss functions for embedding and at-

ributes classification respectively. the L lsgan ( G ) is the least squares

oss for the generator. λ and μ decide the weights of the attributes

oss and the least squares loss. 

.2. Triplet-based neighborhood preserving learning 

In cross-modal retrieval task including sentence-to-image

nd image-to-sentence search, it is of significance to learn a
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Fig. 2. Overview of the adversarial task-specific learning. We first extract features of texts and images, and map them into common subspace. Triplet loss is then exploited 

in order to make the paired image/text as close as possible and the unpaired image/text as far as possible. We utilize generative adversarial network to keep the distribution 

of text and image consistent. Texts’ attributes are preserved for image-to-text retrieval tasks, but we retain the attributes of images if texts retrieve images. 
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eterogeneous semantic representation for text and image. To

e specific, given an sentence (image), the goal is to find the

est matching image (sentence) from the database. The task can

e handled identically by nearest neighbor search in a common

mage-sentence embedding space. Consequently, we take triplet-

ased neighborhood preserving learning into consideration to min-

mize the gap between pairwise cross-modal datas while maximiz-

ng the distance between semantically different datas. We enforce

riplet constraints into the optimizing function for learning to rank

ia a triplet loss term. 

Given a training image I x , T y and T z indicate the sets of pair-

ise matching (positive) and non-matching (negative) texts, re-

pectively. Analogously, given a sentence T x ′ , I y ′ and I z ′ indicate the

ets of pairwise matching and non-matching images. T y ′′ describes

he similar image with T x ′′ . Note that T z ′′ doesn’t share the similar

mage with T x ′′ . Three optimization terms are employed for em-

edding the isomorphic semantic representations. In general, the

bjective function used for optimizing is defined as follow: 

 emd = α · L img + β · L sent + γ · L sent neighbor 
(3)

We take the image and text as anchor to get the following two

ets of triplet loss L img and L sent : 

 img = 

∑ 

I x ,T z 

max 
(
mg + dist 

(
f (I) 
W I 

(I x ) , f 
(T ) 
W T 

(T y ) 
)

− dist 
(

f (I) 
W I 

(I x ) , f 
(T ) 
W T 

(T z ) 
))

(4) 

 sent = 

∑ 

T x ′ ,I z ′ 

max 
(
mg + dist 

(
f (T ) 
W T 

(T x ′ ) , f 
(I) 
W I 

(I y ′ ) 
)

− dist 
(

f (T ) 
W T 

(T x ′ ) , f 
(I) 
W I 

(I z ′ ) 
))

(5) 

Neighborhood preserving embedding between texts can be for-

ulated as: 

 sent neighbor 
= 

∑ 

T x ′′ ,T z ′′ 

max 
(
mg + dist 

(
f (T ) 
W T 

(T x ′′ ) , 

f (T ) 
W T 

(T y ′′ ) 
)

− dist 
(

f (T ) 
W T 

(I x ′′ ) , f 
(T ) 
W T 

(T z ′′ ) 
))

(6) 

here dist ( X, Y ) indicates the Euclidean distance between X and

 in the embedding space. f (T ) 
W T 

denotes the embedding text fea-

ure in the common space, and f (I) 
W 

denotes the embedding image

I 
eature. The margin of the triplet is mg . The weights α and β and

balance the strength of the ranking loss in each part. 

.3. Modality-dependent attribute-preserving feature learning 

Since the text or image is mapped into a common space, it

s unavoidable to lose some information. We propose to maintain

uch semantic attribute abstraction in the shared subspace for each

odality. In such a case, the embedded features from each do-

ain is encouraged to predict categories accurately simultaneously.

pecifically, we reach this purpose through the multi-label seman-

ic attributes classification. 

We regard the semantic categories prediction as a multi-label

lassification task by minimizing the sigmoid cross-entropy loss

unction as: 

 at t r = −1 

n 

n ∑ 

i =0 

[ p i log ̂  p i + (1 − p i ) log(1 − ˆ p i )] (7)

here ˆ p i and p i are the prediction of the network and the tar-

et of label i , respectively. For image-to-sentence retrieval task, we

ake images’s attributes invariant when being embedded to com-

on space. Attributes of sentences in common space remain con-

tant from sentence-to-image retrieval. 

.4. Adversarial cross-modal feature learning 

It is a common knowledge that the features of images and sen-

ences have inconsistent distribution and representation because

hey come from different domain. Accordingly, bridging the do-

ain gap in a common space for images and sentences is of great

ignificance. To achieve this goal, we exploit generative adversarial

etworks (GANs) to keep their distribution consistent in the com-

on space. In our framework, the least squares generative adver-

arial networks (LSGANs) [38] are adopted as the backbone of the

ramework. LSGANs can move the generated samples toward the

ecision boundary by penalizing samples locating on the right side

f the decision boundary, which is the main benefit. 

GANs are to train a discriminator D and a generator G inter-

hangeably, which aim at making the distribution of text ( T ) same

s that of image ( I ). Here, G is feature embedding ( f W 

) in section

.2 . Consequently, the objective loss functions for adversarial fea-

ure learning can be defined as follows: 
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Table 1 

The parameters of our model for different tasks. 

dataset modality μ λ lrD lrG Batchsize negsample mg α γ β

Flickr30K image modality 0.01 0.02 0.0001 0.0004 500 10 0.02 1.5 0.02 1.6 

sentence modality 0.01 0.06 0.0001 0.0003 500 10 0.05 1.5 0.05 1 

MS COCO image modality 0.01 0.02 0.0001 0.0004 500 10 0.02 1.5 0.02 1.6 

sentence modality 0.01 0.06 0.0001 0.0003 500 10 0.05 1.5 0.05 1 
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min 

D 
L lsgan (D ) = 

1 

2 

E I ∼p data (I ) [(D ( f (I) 
W I 

(I)) − 1) 2 ] 

+ 

1 

2 

E T ∼p data (T ) [(D ( f (T ) 
W T 

(T ))) 2 ] (8)

min 

G 
L lsgan (G ) = 

1 

2 

E T ∼p data (T ) [( D ( f (T ) 
W T 

( T )) − 1) 2 ] (9)

For image-to-sentence retrieval task, image domain is the tar-

get domain, while sentence domain is the target domain at the

sentence-to-image retrieval task. 

The optimization of our framework is shown in the Algorithm 1 .

Algorithm 1: Pseudocode of our ATSL. 

Initialization : 

Image features in minibatch: I = { I 1 , I 2 , . . . , I n } ; 
Text features in minibatch: T = { T 1 , T 2 , . . . , T n } ; 
Attribute Label: P = { p 1 , p 2 , . . . , p n } ; 
Hyperparameters: α, β, γ , λ, μ, mg, negsample, lrD, lrG ; 

for number of training iterations do 

for k steps do 

Update the parameters of discriminator by descending 

its stochastic gradient with learning rate lrD : 

∇ W 

(L lsgan (D )) 

end 

Update the parameters of embedding and attribute 

learning by descending its stochastic gradient with 

learning rate lrG : 

∇ W 

(L emd + λ · L at t r + μ · L lsgan (G )) 

end 

return learned embedding feature in common subspace: f (I) 
W I 

and f (T ) 
W T 

; 

4. Experiment results 

4.1. Dataset and evaluation metrics 

To evaluate the effectiveness of proposed approach, we con-

duct extensive experiments on two popular available datasets, i.e.

Flickr30K and MS COCO. 

Flickr30K: This dataset consists of 30,783 images, and each im-

age is accompanied by five descriptive sentences. Following the

same protocol as the recent work [17,20] , we randomly split it into

a training set and a test set with 29,783 and 10 0 0 couples, respec-

tively. 

MS COCO: We use the MS COCO caption dataset which con-

sists of 114,287 images and accompanies by five descriptive sen-

tences for each image as well. We adopt the same splits as re-

ported in [17,20] , 10 0 0 couples used for testing and the rest for

training. 

Evaluation metrics: In our experiments, T2I and I2T tasks are

both considered. We report the performance at Recall@K (K = 1,

5, 10), which is the percentage of queries that at least one correct

result is ranked among the top K of the ranked list. 
.2. Training/testing settings 

To encode images, we exploit VGG19 convolutional neural net-

ork model to obtain 4096-dimensional feature, which is similar

o [17] . Firstly, we resize the images to 256 pixels × 256 pixels.

hen, we crop each image into ten different 224 pixels × 224 pix-

ls images by mining the center, the four corners and them on x -

xis mirror symmetry. Next, we subtract the average strength from

ach color channel of RGB image. Finally, the image is encoded by

he mean outputs of the resulting images. As for sentences repre-

entation, we extract 180 0 0-dimensional fisher vector representa-

ion by exploiting hybrid gaussian-laplacian mixture model, which

s proposed by [16] . To save memory and training time, we reduce

hese 180 0 0-dimensional vectors to 60 0 0 dimensions by multiply-

ng random matrices. 

For both Flickr30K and MS COCO datasets, we apply 4096 →
048 → 512 embedding on the image side when exploiting 4096-

imensional visual features. On the text side, the output dimen-

ions of two fully connected layers are [2048, 512]. For attribute-

reserving branch, we also utilize two FC layers whose dimensions

re [512, 512] and stick to the two FC layers (512 → 256 → 1) for

he adversarial learning. 

The most frequent 512 words are selected to form a vocabu-

ary after eliminating stem words and stop words. According to

his dictionary, we represent a given text as a vector with multiple

abels. For a given text, it is set to 0 if a word does not exist in the

ictionary, otherwise it is 0. If no word in this sentence exists in

he dictionary, all words are set to -1. 

In this paper, all attribute vectors are constructed automatically

ithout any manual annotation. The most frequent 512 words are

elected to form a vocabulary after eliminating stem words and

top words. According to this dictionary, we represent a given text

s a vector with multiple labels. For a given text, it is set to 0 if a

ord does not exist in the dictionary, and vice versa, otherwise it

s 0. If no word in this sentence exists in the dictionary, all words

re set to -1. 

We train different retrieval tasks with different initialization pa-

ameters. The parameters of different tasks for different datasets

re summarized in Table 1 . In this paper, experiments for two

odalities, i.e., image modality and sentence modality, are con-

ucted on Flickr30K and MS COCO. For the same modality, the

yper-parameters for both datasets are same. We determine the

yper-parameters through a series of experiments carried out on

lickr30K due to its samller size. From Table 2 , it is obvious that

he second row achieves the best performance of sentence-image

etrieval, where λ, lrD, mg, β and γ are set to 0.02, 0.0 0 04,

.02, 1.6 and 0.02, respectively. The lowest SUM score lies in the

5th row, where all parameters are consistent with the second

ow except γ . Therefore, γ is considered as a factor that has the

reatest impact on overall performance. For sentence modality, we

an obtain the optimum performance by setting the parameters

o 0.06, 0.0 0 03, 0.05, 1 and 0.05 as shown in the third row of

able 3 . In contrast, margin of triplet loss is the most critical factor

or performance of image-sentence retrieval for sentence modal-

ty, which is demonstrated in the ninth row of Table 3 . Our net-

orks are trained and tested on NVIDIA GeForce TITAN X GPU with
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Table 2 

Retrieval results of different hyper-parameters for image modality on Flickr30K. 

Flickr30K/image modality sentence-image 

R@1 R@5 R@10 R@50 SUM 

1 .λ = 0 . 01 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 02 0.353 0.668 0.763 0.963 2.747 

2 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 02 0.386 0.673 0.778 0.953 2.790 

3 .λ = 0 . 06 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 02 0.363 0.671 0.776 0.955 2.765 

4 .λ = 0 . 08 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 02 0.385 0.672 0.774 0.952 2.783 

5 .λ = 0 . 02 , lrD = 0 . 0 0 02 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 02 0.368 0.672 0.773 0.960 2.773 

6 .λ = 0 . 02 , lrD = 0 . 0 0 03 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 02 0.375 0.669 0.777 0.953 2.774 

7 .λ = 0 . 02 , lrD = 0 . 0 0 05 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 02 0.367 0.674 0.778 0.952 2.771 

8 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 01 , β = 1 . 6 , γ = 0 . 02 0.372 0.672 0.770 0.948 2.762 

9 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 05 , β = 1 . 6 , γ = 0 . 02 0.367 0.677 0.780 0.955 2.779 

10 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 08 , β = 1 . 6 , γ = 0 . 02 0.367 0.670 0.773 0.951 2.761 

11 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 0 . 6 , γ = 0 . 02 0.3 80 0.663 0.776 0.953 2.772 

12 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 0 , γ = 0 . 02 0.382 0.667 0.778 0.948 2.775 

13 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 2 . 0 , γ = 0 . 02 0.362 0.673 0.774 0.958 2.767 

14 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 01 0.365 0.666 0.773 0.958 2.762 

15 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 06 0.373 0.663 0.767 0.953 2.756 

16 .λ = 0 . 02 , lrD = 0 . 0 0 04 , mg = 0 . 02 , β = 1 . 6 , γ = 0 . 08 0.367 0.667 0.777 0.958 2.769 

Table 3 

Retrieval results of different hyper-parameters for sentence modality on Flickr30K. 

Flickr30K/sentence modality image-sentence 

R@1 R@5 R@10 R@50 SUM 

1 .λ = 0 . 01 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 , γ = 0 . 05 0.360 0.654 0.774 0.948 2.736 

2 .λ = 0 . 02 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 , γ = 0 . 05 0.359 0.653 0.773 0.946 2.731 

3 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 , γ = 0 . 05 0.384 0.672 0.780 0.948 2.784 

4 .λ = 0 . 08 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 , γ = 0 . 05 0.354 0.663 0.781 0.945 2.743 

5 .λ = 0 . 06 , lrD = 0 . 0 0 02 , mg = 0 . 05 , β = 1 , γ = 0 . 05 0.354 0.656 0.774 0.940 2.724 

6 .λ = 0 . 06 , lrD = 0 . 0 0 04 , mg = 0 . 05 , β = 1 , γ = 0 . 05 0.355 0.667 0.772 0.938 2.732 

7 .λ = 0 . 06 , lrD = 0 . 0 0 05 , mg = 0 . 05 , β = 1 , γ = 0 . 05 0.356 0.660 0.777 0.940 2.733 

8 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 01 , β = 1 , γ = 0 . 05 0.371 0.661 0.776 0.939 2.747 

9 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 02 , β = 1 , γ = 0 . 05 0.354 0.645 0.769 0.943 2.711 

10 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 08 , β = 1 , γ = 0 . 05 0.374 0.676 0.774 0.946 2.770 

11 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 0 . 6 , γ = 0 . 05 0.364 0.664 0.780 0.935 2.743 

12 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 . 6 , γ = 0 . 05 0.362 0.665 0.771 0.942 2.740 

13 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 2 , γ = 0 . 05 0.366 0.679 0.783 0.943 2.771 

14 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 , γ = 0 . 01 0.360 0.660 0.777 0.935 2.732 

15 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 , γ = 0 . 02 0.364 0.681 0.773 0.947 2.765 

16 .λ = 0 . 06 , lrD = 0 . 0 0 03 , mg = 0 . 05 , β = 1 , γ = 0 . 07 0.367 0.666 0.774 0.938 2.745 
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2GB memory, which is based on the publicly available tensorflow

ramework [56] . 

.3. Comparisons with state-of-the-arts 

We compare our ATSL approach with state-of-the-art meth-

ds on MS COCO and Flickr30K datasets, which have been widely

dopted as benchmark datasets in the latest papers. In order to

ake a fair comparison with [16,17,20] , we report the results

y running released code under the same feature representation,

hich is introduced at Training/Testing Settings . 

We compare the number of parameters with Two-Branch [20],

hich yields the best perfomance among the references. In the

esting phase, like Two-Branch [20], we apply 4096 → 2048 →
12 embedding on the image side and 60 0 0 → 2048 → 512 em-

edding on the text side, which leads to a same computational

ost as Two-Branch [20] . The number of parameters is only 0.288%

ore than Two-Branch for training. 

Table 4 shows the comparisons on MS COCO. It can be observed

hat our ATSL achieves the state-of-the-art results in terms of

ll the evaluation metrics. In particular, ATSL[sent] and ATSL[img]

chieve 0.571 and 0.565 in R@1 for I2T and T2I tasks, which out-

erform other approaches more than 3.2% and 3.0%, respectively.

wo-Branch method is the most similar work to ours, which uti-

izes two network structures to embed representations for differ-

nt modalities and takes neighborhood information into consider-
tion. Besides, Structure Preserving approach proposes a method

hat learning joint embeddings by introducing neighborhood struc-

ure preservation constraint with a two-branch neural network,

hich has a little parallelism with our methods. However, all the

entioned methods do not take the distribution consistency of dif-

erent modalities into consideration. In addition, we apply a task-

pecific learning manner to obtain different common spaces for

ifferent tasks, which can achieve the best performance for both

2I and I2T. 

Table 5 shows the comparisons on Flick30K. We can see that

ur ATSL outperforms prior methods by a relatively large margin.

n particular, ATSL[sent] and ATSL[img] lead to 0.384 and 0.386 in

@1 for I2T and T2I tasks, which obtain significant improvements

ver other approaches more than 4.3% and 3.6%, respectively. In

ddition, our method can also gain more than 2% at Recall@5. 

Both experimental results on MS COCO and Flickr30K well

emonstrate the superiority of our approach. Finally, we visualize

ome T2I and I2T examples in Figs. 3 and 4 , respectively. It can be

bserved that our approach obtains the most ideal results. 

.4. Ablation study 

To validate the effectiveness of each component in our pro-

osed ATSL, we conduct ablation studies on Flickr30K and MS

OCO datasets. 
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Table 4 

Bidirectional retrieval results on MS COCO 10 0 0-image test set. 

MS COCO image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

ACMR[ACM2017] [19] − − − 0.932 − − − 0.871 

Corr-AEs[ACM2014] [15] 0.264 0.609 0.759 0.97 0.26 0.603 0.675 0.961 

Cross-corr-AEs[ACM2014] [15] 0.289 0.615 0.756 0.964 0.286 0.599 0.751 0.956 

Full-corr-AEs[ACM2014] [15] 0.29 0.629 0.772 0.975 0.281 0.637 0.767 0.964 

CCA[FV HGLMM CVPR2015] [16] 0.311 0.616 0.755 0.969 0.253 0.535 0.675 0.961 

Structure Preserving[CVPR2016] [17] 0.487 0.813 0.894 0.988 0.476 0.820 0.895 0.983 

VSEVGG19[ACM2018] [30] 0.537 − 0.925 − 0.412 − 0.897 −
Two-Branch[PAMI2018] [20] 0.539 0.844 0.913 0.99 0.535 0.843 0.919 0.992 

ATSL[sent] 0.571 0.848 0.932 0.991 − − − −
ATSL[img] − − − − 0.565 0.855 0.933 0.995 

Table 5 

Bidirectional retrieval results on Flickr30K 10 0 0-image test set. 

Flickr30K image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

Corr-AEs[ACM2014] [15] 0.234 0.521 0.647 0.877 0.222 0.49 0.608 0.847 

Cross-corr-AEs[ACM2014] [15] 0.221 0.503 0.615 0.88 0.219 0.469 0.61 0.872 

Full-corr-AEs[ACM2014] [15] 0.267 0.551 0.673 0.899 0.248 0.527 0.653 0.874 

CCA[FV HGLMM CVPR2015] [16] 0.329 0.607 0.736 0.929 0.304 0.625 0.734 0.927 

Structure Preserving[CVPR2016] [17] 0.329 0.609 0.727 0.911 0.328 0.637 0.728 0.913 

VSEVGG19[ACM2018] [30] 0.378 − 0.771 − 0.279 − 0.689 −
Two-Branch[PAMI2018] [20] 0.341 0.653 0.753 0.941 0.35 0.646 0.763 0.943 

ATSL[sent] 0.384 0.672 0.78 0.948 − − − −
ATSL[img] − − − − 0.386 0.673 0.778 0.953 

Fig. 3. Examples of comparisons with state-of-the-arts for text-to-image retrieval. For each text query, the top-1 ranked image is shown. 

Fig. 4. Examples of comparisons with state-of-the-arts for image-to-text retrieval. For each image query, the top-1 ranked text is shown. 
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Table 6 

Attribute-preserving retrieval results on MS COCO 10 0 0-image test set. 

MS COCO image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

Two-Branch[PAMI2018] [20] 0.539 0.844 0.913 0.99 0.535 0.843 0.919 0.992 

Two-Branch + attr[sent] 0.548 0.853 0.932 0.992 0.547 0.855 0.926 0.992 

Two-Branch + attr[img] 0.543 0.845 0.928 0.992 0.559 0.857 0.924 0.992 

ATSL[sent] 0.571 0.848 0.932 0.991 0.555 0.857 0.93 0.993 

ATSL[img] 0.559 0.852 0.929 0.993 0.565 0.855 0.933 0.995 

Table 7 

Attribute-preserving retrieval results on Flickr30K 10 0 0-image test set. 

Flickr30K image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

Two-Branch[PAMI2018] [20] 0.341 0.653 0.753 0.941 0.35 0.646 0.763 0.943 

Two-Branch + attr[sent] 0.356 0.656 0.769 0.941 0.363 0.647 0.761 0.947 

Two-Branch + attr[img] 0.357 0.663 0.77 0.941 0.357 0.654 0.762 0.951 

ATSL[sent] 0.384 0.672 0.78 0.948 0.376 0.667 0.78 0.953 

ATSL[img] 0.374 0.679 0.781 0.941 0.386 0.673 0.778 0.953 

Table 8 

Adversarial learning results on MS COCO 10 0 0-image test set. 

MS COCO image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

Two-Branch[PAMI2018] [20] 0.539 0.844 0.913 0.99 0.535 0.843 0.919 0.992 

Two-Branch + GAN[sent] 0.552 0.854 0.924 0.99 0.547 0.855 0.919 0.992 

Two-Branch + GAN[img] 0.554 0.85 0.922 0.993 0.559 0.848 0.921 0.992 

ATSL[sent] 0.571 0.848 0.932 0.991 0.555 0.857 0.93 0.993 

ATSL[img] 0.559 0.852 0.929 0.993 0.565 0.855 0.933 0.995 

Table 9 

Adversarial learning results on Flickr30K 10 0 0-image test set. 

Flickr30K image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

Two-Branch[PAMI2018] [20] 0.341 0.653 0.753 0.941 0.35 0.646 0.763 0.943 

Two-Branch + GAN[sent] 0.37 0.653 0.769 0.942 0.353 0.657 0.767 0.947 

Two-Branch + GAN[img] 0.365 0.662 0.77 0.942 0.38 0.676 0.767 0.953 

ATSL[sent] 0.384 0.672 0.78 0.948 0.376 0.667 0.78 0.953 

ATSL[img] 0.374 0.679 0.781 0.941 0.386 0.673 0.778 0.953 
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.4.1. Attribute-preserving feature learning 

The introduced attribute-preserving feature learning encourages

he learned feature embeddings to be semantic consistent. To an-

lyze this component, we adopt neighborhood preserving embed-

ing as the baseline model [20] . Hence, we conduct experiments

o validate the effectiveness of attribute-preserving feature learn-

ng on the two datasets. 

Table 6 shows the results validated on MS COCO, it is obvi-

us that our proposed method outperforms the baseline model

ignificantly, especially at Recall@1. The results on Flicker 30K are

hown in Table 7 , it is better to learn attribute-preserving embed-

ing than not. With attribute-preserving, the T2I and I2T yield re-

ults of 0.357/0.363 in Recall@1, respectively. All the experiment

esults demonstrate the effectiveness of the attribute-preserving

eature learning for cross-model retrieval task. In this paper, we

ant to highlight that we can obtain the optimal performance for

oth text-to-image retrieval and image-to-text retrieval by train-

ng the networks in different ways, which can motivate other re-

earchers to balance the two tasks. In addition, for single task, we

ave the same computational efficiency as the Two-branch method

n the testing phase. It is more concerned about the retrieval time

f offline than the training time of online for cross-modal retrieval

ask. Moreover, 3% performance improvement is relatively high for

hallow features, which is shown in Tables 4 and 5 . 
.4.2. Adversarial cross-modal feature learning 

In this section, we analyze the adversarial cross-modal feature

earning. During the period of mapping the cross modal data into

 common subspace, the data distribution is usually not taken into

ccount, which would cause semantic deviation adverse to the re-

rieval task. Therefore, we employ the generative adversarial net-

orks to keep the two distributions consistent. To prove the effec-

iveness of adversarial learning, we conduct experiments with and

ithout training LSGANs. 

From the results on MS COCO dataset shown in Table 8 , it can

e noted that our method improves on all the evaluation metrics

nd makes a breakthrough at Recall@1. In particular, the approach

ith adversarial learning yields the Recall@1 accuracy by approxi-

ately 2.4% for sentence-to-image retrieval and 1.5% for image-to-

entence retrieval. These experimental results further validate the

ffectiveness of the proposed adversarial feature learning method

or cross-model retrieval. 

Table 9 reports the effectiveness of adversarial learning on

lickr30K. From Table 9 , we can see that the Recall@1 score is im-

roved from 0.341 to 0.37 for I2T and 0.35 to 0.353 for T2I with

he sentence attribute preserved. With the adversarial learning, Re-

all@1 score is increased from 0.35 to 0.38, with 3% improvement

or sentence-to-image retrieval, and the performance of image-to-

entence retrieval is improved as well. 
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Table 10 

Task-specific retrieval results on Flickr30K 10 0 0-image test set. 

Flickr30K image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

ATSL[double attributes][sent] 0.371 0.669 0.78 0.946 0.381 0.665 0.761 0.951 

ATSL[double attributes][img] 0.37 0.661 0.766 0.936 0.371 0.656 0.765 0.942 

ATSL[sent] 0.384 0.672 0.78 0.948 0.376 0.667 0.78 0.953 

ATSL[img] 0.374 0.679 0.781 0.941 0.386 0.673 0.778 0.953 

Table 11 

Task-specific retrieval results on MS COCO 10 0 0-image test set. 

MS COCO image-sentence sentence-image 

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 

ATSL[double attributes][sent] 0.553 0.85 0.928 0.99 0.549 0.852 0.934 0.989 

ATSL[double attributes][img] 0.558 0.845 0.926 0.993 0.559 0.847 0.927 0.993 

ATSL[sent] 0.571 0.848 0.932 0.991 0.555 0.857 0.93 0.993 

ATSL[img] 0.559 0.852 0.929 0.993 0.565 0.855 0.933 0.995 
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4.4.3. Task-specific learning 

Tables 10 and 11 evaluate the effectiveness of task-specific

learning on Flickr30K and MS COCO, respectively. ATSL with dou-

ble attributes is trained with attributes both on images and texts.

As shown in two tables, we can see that the scores of ATSL are

higher than that of ATSL with double attributes on both image-to-

sentence and sentence-to-image retrieval. Consequently, our ATSL

algorithm is more suitable to deal with image-sentence retrieval

tasks. 

5. Conclusion 

In this paper, we propose an adversarial task-specific learning

approach for image-text retrieval, which can not only make the

distribution of image and text consistent but also preserve the at-

tribute in common subspace. Specially, this approach can learn dis-

tinct embeddings for different retrieval tasks, i.e. images retrieve

texts (I2T) or texts retrieve images (T2I). Our framework is divided

into three parts. Firstly, we leverage mid-level attributes instead

of high-level categories to encourage semantic consistency of pair-

wise embedding. Then, the popular triplet optimization is embed-

ded in our ATSL, so that the pair-wise items are usually more simi-

lar in terms of distance metrics compared with the unrelated ones.

Finally, we introduce an adversarial learning component to better

narrow the distribution differences of the learned embedding fea-

tures of images and texts. Our proposed framework yields state-of-

the-art results on MS COCO dataset and Flickr30K dataset. Future

research directions include integrating word-level, phrase-level and

sentence-level matching to learn rich feature embeddings. 
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